Monday, January 7, 2013

What-a-Ouabagenin! Grams on Demand

I can't believe I got back from New Year's without finding a single post on ouabagenin* [wah-bah-jenn-in], the latest from Phil & Co. in Science this past week:


Ouabagenin, a polyhydroxylated (>5 -OH groups) cardenolide (steroid with an appended lactone) positive inotrope (helps heart pump more forcefully) had been completed only once before, in a 40+ step relay synthesis by Deslongchamps in 2008 (got all that?!?). Only a few mg were prepared, and those of you familiar with the Baran group know that the only real way to make natural products is with a shovel and bucket - gram-scale, baby!

Hulkster - Quite interested in
gram-scale ouabagenin precursors...
So, we start out with 20 g of cortisone acetate - just one reduction shy of Preparation H - and two steps later have a fully protected version of adrenosterone. The group first tries a porphyrin-catalyzed C(19) hydroxylation (the bottom-left methyl), which doesn't work, so they opt instead for some fancy solid-state photochem to generate a cyclobutane ring, which selectively pops open with NIS under sunlamp irradiation.

Selective de-ketalization and iodide hydrolysis sets the stage for a three-step sequence (peroxide, SeO2, peroxide) to generate a diepoxide (right, top), a.k.a. the "most difficult transformation to secure on scale." They toss a "gamut of conditions" at the molecule, only to receive mixtures of enones. Finally, they find that using in situ Al-Hg amalgam (we're talking foil / scissors here!) combined with Sharpless "on water" suspension produces the desired triol, which they wrap up as an acetonide.

Next, "superhydride" reduction both reduces the ketone and protects - as a boronic ester - the remaining two hydroxyl groups. A little Saegusa-esque dehydrogenation, a fluorous solvent-enabled bond migration, and a Co-catalyzed hydration produces 'protected ouabageninone' (right, bottom).

Endgame - We're not out of the woods yet, folks! Conversion of that lone ketone into the vinyl iodide (hydrazine, iodine, TEA) followed by a modified Stille returns a butenolide diene. They again toss in a 'kitchen sinkful' of reductants, only to find that dicobalt-borane (cool!) followed by Barton's base (N-tert-Bu-TMG) produces the correct butenolide orientation (3:1 dr). A touch of HCl in methanol liberates the natural product.

Despite the fact that they report the last few steps on just 30-60 mg, the group claims that they have >0.5 g parked at the protected ouabageninone (vide supra). With this synthesis, Baran also alludes to the overall usefulness of his "redox-relay" strategy, which has certainly served him well before.

*Bonus - In the Scripps press release, Phil calls ouabagenin "probably the most polyhydroxylated steroid known on planet Earth." Billions of yet-undiscovered microorganisms could not be reached for comment.

3 comments:

  1. this is an amazing feat, one of the reasons why I want to be a part of Baran's incredible research!

    ReplyDelete
  2. I don't get why this is in Science.

    ReplyDelete
  3. I'm tired of Phil making up terms like "oxidative relay" and "stereochemical relay". These are not new concepts, they've been used for decades. He over hypes his research in shameful ways.

    ReplyDelete