Showing posts with label sterics. Show all posts
Showing posts with label sterics. Show all posts

Friday, February 21, 2014

Rhodium Gets It Done

Interesting, informative intermediates from Rh(I) silylation
In this week's Science, Hartwig and Cheng disclose some pretty swanky C-H activation chemistry. By combining Rh(I) dimer, a really bulky diphosphine ligand, a cheap, bulky hydrosilane, and a hydrogen "acceptor," the pair turn relatively distant aromatic bonds into highly functional silicon handles. In certain cases, tricks like capping a carbazole with a bulky TIPS group direct the silylation para - all the way to the other side of the aromatic ring!

The authors quickly point out that this silylation runs at "low" temps (80 deg C), uses fairly cheap commercially-available reagents, and occurs with almost reversed selectivity to the corresponding direct borylation conditions. But my favorite part comes from a deep dive into the Supporting Information. Far from the discussion of academic over-publishing we've had for the past few days, Hartwig and Cheng really sculpt a great paper here: Stability studies. Reactivity differences (Si vs. B). Cross-couplings. Preliminary mechanistic details.

As always, there's tons more to do. Getting out of the glovebox with a more stable Rh precursor, or translating the reactivity to an earlier metal (a tall order!). Deeper mechanistic studies would certainly show the way. Even more tantalizing? Using single-enantiomer versions of the bulky ligands to incorporate some chiral-at-silicon synthons. I can't wait to see the rest of this story.